

Introduction : Pre-trained Language Representations Fine-tuning approach Introduce minimal task-specific parameters Trained on the downstream tasks by simply fine-tuning the pre-trained parameters OpenAl GPT, BERT Y N Downstream task Language Model Tean task

grew

7

ир

in

Introduction : Pre-trained Language Representations

Feature-based approach

- Use task-specific architectures that include the pre-trained representations as additional features
 - · Learned representations are used as features in a downstream model

ELMo

Feature-based approach : ELMo biLSTM part > Two objectives : predicting word in forward direction, backward direction • Forward : $p(t_1, t_2, ..., t_N) = \prod_{k=1}^N p(t_1|t_1, t_2, ..., t_{k-1})$ ✓ Task of predicting next token • backward : $p(t_1, t_2, ..., t_N) = \prod_{k=1}^N p(t_k | t_{k+1}, t_{k+2}, ..., t_N)$ Task of predicting previous token > Overall objective is to jointly maximizes the log likelihood of the forward and backward directions $J(\boldsymbol{\theta}) = \sum_{k=1}^{N} (\log p(t_k | t_1, \dots, t_{k-1}; \theta_x, \vec{\theta}_{LSTM}, \theta_s) + \log p(t_k | t_{k+1}, \dots, t_N; \theta_x, \vec{\theta}_{LSTM}, \theta_s))$ Backward Language Model Forward Language Model LSTM Layer #2 Output Layer LSTM Laver LSTM Laver #1 LSTM Laver Embedding TIT TIT

\circ

Feature-based approach : ELMo

> ELMo collapses all layers in R into a single vector,

- > Choices of *ELMo*_K = $E(R_k; \Theta_{\rho})$
 - Simplest case : $ELMo_K = E(R_k) = h_{k,L}^{LM}$ (top layer) (Peters et al. 2017, McCann et al. 2017)
 - General case : compute a task specific weighting of all bit M layers down-stream task learns weighting parameters

Feature-based approach : ELMo

ELMo Evaluation

TASK	PREVIOUS SOTA		OUR BASELIN	ELMO + E BASELINE	INCREASE (ABSOLUTE RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2/17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2/9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06/21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3/6.8%

- > Question Answering, **SQuAD** : average F₁ score +1.4% than SOTA
- > Textual Entailment, SNLI : accuracy score +0.7% when SOTA + ELMo
- Semantic Role Labeling, SRL : average F1 score +3.2% when SOTA reimplementation + ELMo
- \succ Coreference resolution, Coref : average F₁ score +3.2% when SOTA reimplementation + ELMo
- $\succ~$ Named Entity Extraction, NER : average F_1 score +0.3% when SOTA + ELMo
- > Sentiment Analysis, SST-5 : accuracy score +1% when SOTA reimplementation + ELMo

Fine-tuning approach : Open-AI GPT

Framework

- First stage, learning a high-capacity language model on a large corpus of text(BooksCorpus dataset)
- Followed by a fine-tuning stage where the model adapts to a discriminative task with labeled data

First Stage, Unsupervised pre-training

- > Language model objective with large corpus of unlabeled data
- $\succ L_1(\mathcal{U}) = \sum_i \log \boldsymbol{P}(u_i | u_{i-k}, \dots, u_{i-1}; \boldsymbol{\theta})$
 - k : size of the context window
 - $\mathcal{U} = \{u_1, u_2, ..., u_n\}$: unsupervised corpus of tokens
 - P : modeled using a neural network with parameters θ
- > Multi-layer Transformer decoder block for the language model

Fine-tuning approach : Open-AI GPT

First Stage, Unsupervised pre-training (Cont'd)

- Overview
 - Inputs tokenized by spaCy tokenizer
 - Inputs are fed into 12 layers of Transformer blocks in each time step
 - Last layer produce probability distribution over BPE based vocabulary (40,000)

~

Open-AI GPT 3
 ◆ Model: GPT-2와 동일한 구조 > 파라미터 수 증가 (175B 파라미터) ◆ 데이터 소개 > 45TB나 되는 150Billion Token (500GB 전처리된 텍스트)
COMPARISON: NLP PRE-TRAINED MODELS 175,000 12 18 66 110 110 125 340 340 355 1500 14 1000 77,000 12 18 66 110 110 125 340 340 355 1500 15 1000 77,000 10 10 125 340 340 355 1500 10 10 10 125 10 10 10 125 10 10 10 10 10 10 10 10 10 10 10 10 10
Compartison: Size of paremeters between models.
31

Open-AI GPT 3

* Task-agnostic Language Model

Open-AI GPT 3

❖ 문장 생성 및 Cloze 퀴즈 맞추기 태스크에 대한 성능

Setting	LAMBADA (acc)	LAMBADA (ppl)	StoryCloze (acc)	HellaSwag (acc)
SOTA	68.0 ^a	8.63 ^b	91.8 ^c	85.6d
GPT-3 Zero-Shot	76.2	3.00	83.2	78.9
GPT-3 One-Shot	72.5	3.35	84.7	78.1
GPT-3 Few-Shot	86.4	1.92	87.7	79.3

Alice was friends with Bob. Alice went to visit her friend _____. \rightarrow Bob

George bought some baseball equipment, a ball, a glove, and a _____. \rightarrow

Translation

Setting	$En \rightarrow Fr$	Fr→En	En→De	De→En	En→Ro	Ro→Er
SOTA (Supervised)	45.6"	35.0 ^b	41.2°	40.2^{d}	38.5"	39.9
XLM [LC19]	33.4	33.3	26.4	34.3	33.3	31.8
MASS [STQ+19]	37.5	34.9	28.3	35.2	35.2	33.1
mBART [LGG+20]		~	29.8	34.0	35.0	30.5
GPT-3 Zero-Shot	25.2	21.2	24.6	27.2	14.1	19.9
GPT-3 One-Shot	28.3	33.7	26.2	30.4	20.6	38.6
GPT-3 Few-Shot	32.6	39.2	29.7	40.6	21.0	39.5

 \sim

Fine-tuning approach : BERT SERT (Bidirectional Encoder Representations from Transformers) Paper published in NAACL 2019 by Google AI "BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding," Devlin et al. 2019, NAACL. Won Best Long Paper

33

Fine-tuning approach : BERT

* BERT (Bidirectional Encoder Representations from Transformers)

- > Open-AI GPT cannot take on right to left context
 - Deep bidirectional model is more powerful than either a left-to-right model(GPT) or the shallow concatenation of a left-to-right and right-to-left model(ELMo)
 - Every token can only attend to previous tokens in the self-attention layers of the Transformer
 - This is due to the fact that standard Language Models can only be trained left-toright or right-to-left
 - ✓ Since bidirectional conditioning would <u>allow each word to indirectly "see itself</u>" in a <u>multi-layered context.</u>
 - $\checkmark\,$ Ex) language model training "As long as you love me" from left to right

Fine-tuning approach : BERT

Masked Language Model?

- > How about mask one of the tokens in a sentence and guess what that is
- Ex) As long <u>MASK</u> you love me : "as"
- > Can take account of the context after the target token

Next Sentence Prediction task?

- > Guessing appropriate sequence after which follows
- > Ex) current sequence : "I think I mastered the concept"

Fine-tuning	approach :	BERT
-------------	------------	------

- How to construct an input?
 - [CLS] + sentence A + [SEP] + sentence B
 - Just like 'start', 'delim' tokens : 'CLS', 'SEP' tokens

Input example

• Ex) ['CLS', 'my', 'dog', 'is', 'cute', 'SEP', 'he', 'likes', 'playing', 'SEP']

38

BERT_{BASE}

BERTLARGE

10

Task #1 : Masked LM (Cont'd)

- Two downsides of this approach
 - 1st, we are creating a mismatch between pre-training and fine-tuning ✓ '[MASK]' token is never seen during fine-tuning time

47

Take special steps

Ex) "my dog is hairy" and 'hairy' is randomly selected

- 80% of the time (0.8 × α%) : MASK

 "my dog is [MASK]"
- 10% of the time (0.1 × a%) : Replace with a random word
 ✓ "my dog is apple"
- 10% of the time (0.1 × α%): Keep the word unchanged

 [~] "my dog is hairy"

Fine-tuning approach : BERT

Task #1 : Masked Language Model (MLM)

- > Mask α % of the input tokens to be predicted
- The final hidden vectors corresponding to the mask tokens are fed into an output softmax over the vocab

Fine-tuning approach : BERT

Task #1 : Masked LM (Cont'd)

- > Two downsides of this approach
 - 2nd, only 15% of tokens are predicted in each batch
 - ✓ which suggests that more pre-training steps may be required for the model to converge
 ✓ Left-to-right model predicts every token so it converges faster
 - However, empirical improvements of the MLM model far outweigh the increased training cost

Task #2 : Next Sentence Prediction (NSP) (Cont'd)

Effect of training with the task of NSP

			Dev Set		
Tasks	MNLI-m (Acc)	QNLI (Acc)	MRPC (Acc)	SST-2 (Acc)	SQuAD (F1)
BERTBASE	84.4	88.4	86.7	92.7	88.5
No NSP	83.9	84.9	86.5	92.6	87.9
LTR & No NSP	82.1	84.3	77.5	92.1	77.8
+ BiLSTM	82.1	84.1	75.7	91.6	84.9

- No NSP : trained without the NSP task
- LTR & No NSP : trained without the NSP task + only left-to-right LSTM
- Removing NSP hurts performance significantly on QNLI, MNLI, SQuAD which depend largely on the relationship between two sentences

Result

 Obtains 4.5% and 7.0% respective average accuracy improvement over the prior SOTA

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set.⁸ BERT and OpenAI GPT are single-model, single task. Fl scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

GLUE(General Language Understanding Evaluation) Dataset

Result SQuAD 2.0

- SQuAD 1.1 + 'No Answer' task
- > +5.1 F1 improvement over the previous best system

System	Dev		Test	
Des . Contraction	EM	F1	EM	F1
Top Leaderboard Systems	(Dec	10th, 2	2018)	
Human	86.3	89.0	86.9	89.5
#1 Single - MIR-MRC (F-Net)	-	-	74.8	78.0
#2 Single - nlnet	-	-	74.2	77.1
Publishe	d			
unet (Ensemble)	-	-	71.4	74.9
SLQA+ (Single)	-		71.4	74.4
Ours				
BERTLARGE (Single)	78.7	81.9	80.0	83.1

58

References

- ELMo explanation blog : <u>https://www.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018</u>
- * ELMo, BERT, OpenAl GPT explanation blog : http://jalammar.github.io/illustrated-bert/
- Universal Language Model Fine-tuning for Text Classification (Jeremy Howard and Sebastian Ruder, 2018)
- BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding," Devlin et al. 2019, NAACL
- Improving Language Understanding with Unsupervised Learning (Radford et al. 2018)
- * Attention Is All You Need, Vaswani et al. 2017
- Stanford CS224N: NLP with Deep Learning | Winter 2019 | Lecture 14 Transformers and Self-Attention
- https://www.youtube.com/watch?v=5vcj8kSwBCY&t=811s
- OpenAI-GPT figure : <u>https://www.topbots.com/generalized-language-models-ulmfit-openai-gpt/</u>
- Input representation of BERT : https://medium.com/@_init_/why-bert-has-3-embeddinglayers-and-their-implementation-details-9c261108e28a

References

- Chris McCormick, "Word2Vec Tutorial The Skip-Gram Model" : <u>http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/</u>
- Mikolov et al. 2013, "Efficient Estimation of Word Representations in Vector Space")
- G.E. Hinton, J.L. McClelland, D.E. Rumelhart. Distributed representations. In: Parallel distributed processing: Explorations in the microstructure of cognition. Volume 1: Foundations, MIT Press, 1986.
- Distributed Representations of Words and Phrases and their Compositionality (Mikolov et al. 2013)
- LM picture : https://upload.wikimedia.org/wikipedia/commons/d/dd/CBOW eta Skipgram.png
- Transfer Learning Tutorial by Sebastian Ruder, Matthew Peters, Swabha Swayamdipta, Thomas Wolf:

https://docs.google.com/presentation/d/1flhGikFPnb7G5kr58OvYC3GN4io7MznnM0aAga dvJfc/edit#slide=id.g58bdd596a1_0_0

- Semi-supervised Sequence Learning NIPS Proceedings, Dai and Le, 2015
- * Semi-supervised sequence tagging with bidirectional language models, Peters et al. 2017
- Deep contextualized word representations, Peters et al. 2018

4 -

