
1

Ko, Youngjoong

Sungkyunkwan University

Pre-training Language
Representation

(ELMo, BERT, OpenAI GPT)

2

Contents

1. Introduction to Pre-trained Language Representations

2. (Feature-based approach) ELMo

3. (Fine-tuning approach) OpenAI GPT

4. OpenAI GPT3

5. (Fine-tuning approach) BERT

6. Summary

3

Introduction : Transfer Learning

 How can we take advantage of distributed word representation?

 Transfer Learning

 What is Transfer Learning?

4

Introduction : Transfer Learning

 Transfer Learning using word representations

 Pre-trained Word Representation

word2vec
GloVe
skip-thought
InferSent
ELMo
ULMFiT
GPT
BERTText Corpus

Classification
Sequence Labeling
Question & Answering

….

Pre-trained word
representation

Unsupervised Learning
with unlabeled data

Supervised Learning
with labeled data

2

5

Introduction : Pre-trained Language Representations

 Two kinds of Pre-trained Language Representations

 1) Feature-based approach

 2) Fine-tuning approach

 Feature-based approach

 Use task-specific architectures that include the pre-trained representations
as additional features

 Learned representations are used as features in a downstream model

 ELMo

6

Introduction : Pre-trained Language Representations

 Fine-tuning approach

 Introduce minimal task-specific parameters

 Trained on the downstream tasks by simply fine-tuning the pre-trained
parameters

 OpenAI GPT, BERT

7

Introduction : Pre-trained Language Representations

Language Model

I up ingrew

Downstream task

Y N

 ELMo (Peters et al. 2018)

 In GloVe, Word2vec method,

 Polysemous words refer to same
representation no matter the context

 “I am a big fan of Mozart”
 ‘fan’ = [-0.5, -0.3, 0.228, 0.9, 0.31]

 “I need a fan to cool the heat”
 ‘fan’ = [-0.5, -0.3, 0.228, 0.9, 0.31]

8

Feature-based approach : ELMo

fan

cool

BTS

fan

concert

Air-conditioner

Language Model

I a fanneed

a fan ofneed

?

3

 ELMo (Peters et al. 2018) (Cont’d)

 Let the words be represented according to the context !!!

9

Feature-based approach : ELMo

I need a fan … … fan to cool the heat Hmm?

Learn to consider context
from left-to-right

Learn to consider context
from right-to-left

 ELMo (Peters et al. 2018) (Cont’d)

 Trained task-specifically

 Learned parameters(weights) from language model are used as a feature for
another task

10

Feature-based approach : ELMo

Different Task

‘tree’ general

Language Model

The grew uptree

‘tree’ from ELMo

[-0.1, 0.3, 0.25, 0.7, -0.1, -0.4, 0.6, 0.8]

 ELMo (Peters et al. 2018) (Cont’d)

 Two components of the ELMo

 biLSTM pre-training part
 Use vectors derived from a bidirectional LSTM trained with a coupled LM Objective

 ELMo part
 Task specific combination of the representations in the biLM

11

Feature-based approach : ELMo

ELMo partbiLSTM part

 biLSTM part

 Two objectives : predicting word in forward direction, backward direction

 Forward : 𝑝 𝑡 , 𝑡 , … , 𝑡 = ∏ 𝑝(𝑡 |𝑡 , 𝑡 , … , 𝑡)

 Task of predicting next token

 backward : 𝑝 𝑡 , 𝑡 , … , 𝑡 = ∏ 𝑝(𝑡 |𝑡 , 𝑡 , … , 𝑡)

 Task of predicting previous token

 Overall objective is to jointly maximizes the log likelihood of the forward and
backward directions

 𝐽 𝜽 = ∑ (log 𝑝 𝑡 |𝑡 , … , 𝑡 ; 𝜃 , �⃗� , 𝜃 + log 𝑝 𝑡 |𝑡 , … , 𝑡 ; 𝜃 , �⃖� , 𝜃)

12

Feature-based approach : ELMo

4

 ELMo part

 Part where the ELMo word representation is defined

 Task specific combination of the intermediate layer representations in the
biLM

𝑅 = ℎ , 𝑗 = 0, … , 𝐿}

13

Feature-based approach : ELMo

k=1 k=2 k=1 k=2

j=0

j=1

j=2

k=3 k=3

 ELMo part (Cont’d)

 Layer representation trained from biLSTM part, 𝑅

 ELMo collapses all layers in 𝑅 into a single vector,
𝑬𝑳𝑴𝒐 = 𝐸 𝑅 ; Θ

14

Feature-based approach : ELMo

[�⃗� , �⃖� ,]

[x x]

[�⃗� , �⃖� ,]

𝑅 = ℎ , 𝑗 = 0, … , 𝐿}

 ELMo part (Cont’d)

 ELMo collapses all layers in 𝑅 into a single vector,

 Choices of 𝑬𝑳𝑴𝒐 = 𝐸 𝑅 ; Θ

 Simplest case : 𝑬𝑳𝑴𝒐 = 𝐸 𝑅 = ℎ , (top layer) (Peters et al. 2017, McCann
et al. 2017)

 General case : compute a task specific weighting of all biLM layers
down-stream task learns weighting parameters

𝑬𝑳𝑴𝒐 = 𝐸 𝑅 ; Θ = 𝛾 𝑠 𝐡 ,

15

Feature-based approach : ELMo

[�⃗� , �⃖� ,]

[x x]

[�⃗� , �⃖� ,]

 ELMo Evaluation

 Question Answering, SQuAD : average F score - +1.4% than SOTA

 Textual Entailment, SNLI : accuracy score - +0.7% when SOTA + ELMo

 Semantic Role Labeling, SRL : average F score - +3.2% when SOTA reimplementation + ELMo

 Coreference resolution, Coref : average F score - +3.2% when SOTA reimplementation + ELMo

 Named Entity Extraction, NER : average F score - +0.3% when SOTA + ELMo

 Sentiment Analysis, SST-5 : accuracy score - +1% when SOTA reimplementation + ELMo

16

Feature-based approach : ELMo

5

 ELMo Evaluation : effects of ‘Deep biLM’ part

 Deep biLM effects

 using biLM’s context representation,

 Disambiguate word sense in the source sent (Word Sense Disambiguity test)
 Deeper layers catch more of semantic information

 Disambiguate part of speech in the source sent (POS tagging test)
 Shallower layers catch more of syntactic information

17

Feature-based approach : ELMo

18

Fine-tuning approach to pre-trained Word Representation

 Fine-tuning approach

 Trained on the downstream tasks by simply fine-tuning the pre-trained
params

 Minimal task-specific parameters

 “fine-tune effectively with minimal changes to the architecture of the pre-trained
model,” (Radford et al. 2018)

 OpenAI GPT, BERT

Language Model

I up ingrew

Downstream task

Y N

19

Fine-tuning approach : Open-AI GPT

 OpenAI-GPT

 From ‘Improving Language
Understanding by Generative
Pre-Training’ paper, Radford et
al. 2018

 Make use of Transformers model
into unsupervised pre-training

 It is then transferred to
discriminative tasks (downstream
task)

Encoder
(BERT)

Decoder
(GPT)

20

Fine-tuning approach : Open-AI GPT

 Framework

 First stage, learning a high-capacity language model on a large corpus of
text(BooksCorpus dataset)

 Followed by a fine-tuning stage where the model adapts to a discriminative
task with labeled data

 First Stage, Unsupervised pre-training

 Language model objective with large corpus of unlabeled data

 𝐿 𝒰 = ∑ 𝑙𝑜𝑔𝑷 𝑢 |𝑢 , … , 𝑢 ; 𝜽

 𝑘 ∶ 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑤𝑖𝑛𝑑𝑜𝑤

 𝒰 = {𝑢 , 𝑢 , … , 𝑢 } ∶ 𝑢𝑛𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 𝑐𝑜𝑟𝑝𝑢𝑠 𝑜𝑓 𝑡𝑜𝑘𝑒𝑛𝑠

 𝑷 ∶ 𝑚𝑜𝑑𝑒𝑙𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 𝑎 𝑛𝑒𝑢𝑟𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑤𝑖𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝜽

 Multi-layer Transformer decoder block for the language model

6

21

Fine-tuning approach : Open-AI GPT

 Transformer (Decoder Block)

 Linearly transform 𝑑 : Q (Query) , linearly transform the others : K (Key)

 Dot product of every neighboring position

 (mask out future words logits by multiplying 10e-9)

 Softmax the logits Convex Combination of the softmax result then put
through FFNN

=> Becomes the re-representation of 𝑑 = 𝑑′

22

Fine-tuning approach : Open-AI GPT

 First Stage, Unsupervised pre-training (Cont’d)

 Overview

 Inputs tokenized by spaCy tokenizer

 Inputs are fed into 12 layers of Transformer blocks in each time step

 Last layer produce probability distribution over BPE based vocabulary (40,000)

23

Fine-tuning approach : Open-AI GPT

 First Stage, Unsupervised pre-training (Cont’d)

 12 layers of Transformer blocks

 i) Masked multi-headed self-attention over the input context tokens

 ii) Followed by position-wise feedforward layers

 iii) Softmax of feedforward result over the target tokens

L = 12

 First Stage, Unsupervised pre-training (Cont’d)

 Example) “I want to build a language model architecture …”

‘build’

‘want’ ‘to’

I want to

24

Fine-tuning approach : Open-AI GPT

7

 Second Stage, Supervised fine-tuning

 Once the first stage is finished with unsupervised corpus of tokens, our
language model parameter is pre-trained thus it is available as pre-trained
word representation

 Adapt the parameters from first stage to the supervised target task with
labeled dataset 𝒞 = 𝑐 , … , 𝑐 } 𝑤ℎ𝑒𝑟𝑒 𝑐 = {𝑥 , … , 𝑥 , 𝑦

 The inputs are passed through our pre-trained model to obtain the final
transformer block’s activation ℎ

 𝑚 : last token index, 𝑙 : last layer index

25

Fine-tuning approach : Open-AI GPT

𝑥 𝑥

…

ℎ 𝑊

𝑥

𝑃 𝑦 𝑥 , … , 𝑥 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(ℎ 𝑊)

 There is one problem in Second Stage …

 Input form of the Open-AI GPT looks like

 𝒰 = {𝑢 , 𝑢 , … , 𝑢 },
ex) {‘I’, ‘am’, ‘a’, ‘student’, ‘I’, ‘like’, ‘studying’, … }

 In task-specific task such as question answering, textual entailment

 They have structured inputs
ex) {document, question, answers}

26

Fine-tuning approach : Open-AI GPT

document

question

answer

 There is one problem in Second Stage … (Cont’d)

 How to align those structured inputs so as to fine-tune with the structured
inputs in a pre-trained input manner?

 Fit form of the inputs to the model

 ‘Start,’ ‘Delim,’ ‘Extract’ tokens !!

 Ex) Entailment task, input has structured form of Premise and Entailment

 Align the input as below

 See the difference between Feature-based & Fine-tuning approach?

 Feature-based : You fit your representation to the task

 Fine-tuning : task is fitted to the representation learning

27

Fine-tuning approach : Open-AI GPT

 Second Stage, Supervised fine-tuning (Cont’d)

28

Fine-tuning approach : Open-AI GPT

8

 Task-agnostic Language Model

 Fine-tuning 없는범용성이좋은 Task-agnostic NLP 모델

 Zero-shot Learning?

29

Open-AI GPT 3

 Task-agnostic Language Model

 Few-shot Learning

30

Open-AI GPT 3

 Model: GPT-2와동일한구조

 파라미터수증가 (175B 파라미터)

 데이터소개

 45TB나되는 150Billion Token (500GB 전처리된텍스트)

31

Open-AI GPT 3

 문장생성및 Cloze 퀴즈맞추기태스크에대한성능

 Translation

32

Open-AI GPT 3

9

33

Fine-tuning approach : BERT

 BERT (Bidirectional Encoder Representations from Transformers)

 Paper published in NAACL 2019 by Google AI

 “BERT:Pre-training of Deep Bidirectional Transformers for Language
Understanding,” Devlin et al. 2019, NAACL.

 Won Best Long Paper

34

Fine-tuning approach : BERT

 BERT (Bidirectional Encoder Representations from Transformers)

 Open-AI GPT cannot take on right to left context

 Deep bidirectional model is more powerful than either a left-to-right model(GPT)
or the shallow concatenation of a left-to-right and right-to-left model(ELMo)

 Every token can only attend to previous tokens in the self-attention layers of the
Transformer

 This is due to the fact that standard Language Models can only be trained left-to-
right or right-to-left
 Since bidirectional conditioning would allow each word to indirectly “see itself” in a

multi-layered context.

 Ex) language model training “As long as you love me” from left to right

Illegal !!!

‘SOS’ “As” “long”

Trm Trm

Trm Trm

Trm

Trm

“As” ? “as”

35

Fine-tuning approach : BERT

 BERT (Bidirectional Encoder Representations from Transformers)

 BERT is designed to pre-train representations by jointly conditioning on
both left and right context in all layers

 How? By training on two new tasks !
 Word Representation learning via “masked language model” task

 “Next Sentence Prediction” task

as MASK as

Trm Trm

Trm Trm

Trm

Trm

long

‘SOS’ “as” “long”

Trm Trm

Trm Trm

Trm

Trm

“as” ? “as”

vs.

Masked language
model task

Illegally injecting future
label information to LM. 36

Fine-tuning approach : BERT

 Masked Language Model?

 How about mask one of the tokens in a sentence and guess what that is

 Ex) As long MASK you love me : “as”

 Can take account of the context after the target token

 Next Sentence Prediction task?

 Guessing appropriate sequence after which follows

 Ex) current sequence : “I think I mastered the concept”

Now I can start coding.
Let’s do it!!

What’s this smell?
Can you smell it too?

Appropriate next sequence Inappropriate next sequence

10

37

Fine-tuning approach : BERT

 Overall Architecture

 Multi-layer bidirectional Transformer Encoder

 Transformer is now able to refers to the right-to-left context due to the changed
train objectives

 Task specific layer on top of the model

38

Fine-tuning approach : BERT

 Overall Architecture

 Two model sizes

 BERT : L=12, H=768, A=12

 BERT : L=24, H=1024, A=16

 Where L = number of layers, H = hidden size, A = self-attention head

A=12

H=768

L=12 L=24

A=16

H=1024

BERTBERT

39

Fine-tuning approach : BERT

 Overall Procedure

 How to construct an input?

 [CLS] + sentence A + [SEP] + sentence B

 Just like ‘start’, ‘delim’ tokens : ‘CLS’, ‘SEP’ tokens

 Input example

 Ex) [‘CLS’, ‘my’, ‘dog’, ‘is’, ‘cute’, ‘SEP’, ‘he’, ‘likes’, ‘playing’, ‘SEP’]

40

Fine-tuning approach : BERT

 Overall Procedure (Cont’d)

 Input is represented and fed to the model summing

 1) WordPiece embeddings (Wu et al. 2016)

 2) Segment embeddings

 3) Learned positional embeddings

11

41

Fine-tuning approach : BERT

 Overall Procedure (Cont’d)

 1) WordPiece embeddings (Wu et al. 2016)

 Use embeddings trained with objectives that selects D wordpieces such that the
resulting corpus is minimal in the number of wordpieces when segmented
according to the chosen wordpiece model

 Data-driven tokenization method that aims to achieve a balance between vocab
size and out-of-vocab words
 “strawberries”

= “straw” + “berries”

 Enables BERT to only store
30,522 “words” in its vocab
and very rarely encounter
out-of-vocab words

42

Fine-tuning approach : BERT

 Overall Procedure (Cont’d)

 2) Segment Embeddings

 Segment Embeddings help
BERT distinguish the
tokens in input pair

 Sent A : Index 0 → 768 vec
Sent B : index 1 → 768 vec

 Index 0 when input only contains
one input sentence

43

Fine-tuning approach : BERT

 Overall Procedure (Cont’d)

 2) Positional Embeddings

 BERT is designed to process input sequences of up to length 512

 BERT learns a vector representation for each position

512

44

Architecture of Transformer

 Multihead attention in Transformer

 Sentence is about ‘who,’ ‘did what,’ and ‘to whom’

 In CNN, different filters learn the concept of ‘who,’ ‘did what,’ and ‘to whom.’

 Self-attention can’t pick out different information from different places

 It’s just a linear combination everywhere

12

45

Architecture of Transformer

 Multihead attention in Transformer (Cont’d)

 Apply self-attention multiple times, each of them linearly transform token so
that it conveys different information of interests

46

Fine-tuning approach : BERT

 Task #1 : Masked Language Model (MLM)

 Mask 𝛼% of the input tokens to be predicted

 The final hidden vectors corresponding to the mask tokens are fed into an
output softmax over the vocab

[CLS] the man

Trm Trm

Trm Trm

Trm

Trm

Trm

Trm

Trm

Trm

Trm

Trm

Trm

Trm

[MASK] to [MASK] to

softmax

Trm

buy

Trm

went store

softmax

47

Fine-tuning approach : BERT

 Task #1 : Masked LM (Cont’d)

 Two downsides of this approach

 1st, we are creating a mismatch between pre-training and fine-tuning
 ‘[MASK]’ token is never seen during fine-tuning time

 Take special steps
Ex) “my dog is hairy” and ‘hairy’ is randomly selected

 80% of the time (0.8 × 𝛼%) : MASK
 “my dog is [MASK]”

 10% of the time (0.1 × 𝛼%) : Replace with a random word
 “my dog is apple”

 10% of the time (0.1 × 𝛼%) : Keep the word unchanged
 “my dog is hairy”

48

Fine-tuning approach : BERT

 Task #1 : Masked LM (Cont’d)

 Two downsides of this approach

 2nd , only 15% of tokens are predicted in each batch
 which suggests that more pre-training steps may be required for the model to converge

 Left-to-right model predicts every token so it converges faster

 However, empirical improvements of the MLM model far outweigh the increased
training cost

13

49

Fine-tuning approach : BERT

 Task #2 : Next Sentence Prediction (NSP)

 To equip with ability to understand the relationship between two text
sentences which is not directly captured by LM.

 Question Answering(QA), Natural Language Inference(NLI) tasks

 Pre-train binary next sentence prediction task

IsNext NotNext

50

Fine-tuning approach : BERT

 Task #2 : Next Sentence Prediction (NSP) (Cont’d)

[CLS] the man went to [MASK] store [SEP] he bought a [MASK] chocolate milk [SEP]

IsNext NotNext

83% vs 17%

51

Fine-tuning approach : BERT

 Task #2 : Next Sentence Prediction (NSP) (Cont’d)

[CLS] the man went to [MASK] store [SEP] starry [MASK] night [SEP]

IsNext NotNext

11% vs 89%

52

Fine-tuning approach : BERT

 Task #2 : Next Sentence Prediction (NSP) (Cont’d)

 Effect of training with the task of NSP

 No NSP : trained without the NSP task

 LTR & No NSP : trained without the NSP task + only left-to-right LSTM

 Removing NSP hurts performance significantly on QNLI, MNLI, SQuAD
which depend largely on the relationship between two sentences

14

53

Fine-tuning approach : BERT

 Now that the pre-trained model is ready, start fine-tuning !

 No need to construct another model for another task

 Just add the output layer parts !

pre-trained
model
ready

Just add params
for specific task

Fine-tuning

54

Fine-tuning approach : BERT

 Fine-tuning

 [CLS] embedding (𝑪 𝜖 ℝ) is mostly used for fine-tuning task

 Only new parameter (𝑾 𝜖 ℝ ×) for classification layer

 𝐾 is the # of classifier lables, ex. 2 for [‘IsNext’, ‘NotNext’]

 Label probabilities (𝑷 𝜖 ℝ = softmax 𝐶𝑊)

pre-trained
model
ready

Just add params
for specific task

Fine-tuning

𝑷

𝐾

55

Fine-tuning approach : BERT

 Fine-tuning in spanning or token-level task

 Modified slightly to use different number and different location of the hidden-
states other than [CLS]

56

Fine-tuning approach : BERT

 Result

 GLUE(General Language Understanding Evaluation) Dataset

 Obtains 4.5% and 7.0% respective average accuracy improvement over the prior
SOTA

15

57

Fine-tuning approach : BERT

 Result (QA test)

58

Fine-tuning approach : BERT

 Result SQuAD 2.0

 SQuAD 1.1 + ‘No Answer’ task

 +5.1 F1 improvement over the previous best system

59

References

 Chris McCormick, “Word2Vec Tutorial – The Skip-Gram Model” :
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

 Mikolov et al. 2013, “Efficient Estimation of Word Representations in Vector Space”)

 G.E. Hinton, J.L. McClelland, D.E. Rumelhart. Distributed representations. In: Parallel
distributed processing: Explorations in the microstructure of cognition. Volume 1:
Foundations, MIT Press, 1986.

 Distributed Representations of Words and Phrases and their Compositionality (Mikolov
et al. 2013)

 LM picture :
https://upload.wikimedia.org/wikipedia/commons/d/dd/CBOW_eta_Skipgram.png

 Transfer Learning Tutorial by Sebastian Ruder, Matthew Peters, Swabha Swayamdipta,
Thomas Wolf :
https://docs.google.com/presentation/d/1fIhGikFPnb7G5kr58OvYC3GN4io7MznnM0aAga
dvJfc/edit#slide=id.g58bdd596a1_0_0

 Semi-supervised Sequence Learning - NIPS Proceedings, Dai and Le, 2015

 Semi-supervised sequence tagging with bidirectional language models, Peters et al. 2017

 Deep contextualized word representations, Peters et al. 2018

60

References

 ELMo explanation blog : https://www.slideshare.net/shuntaroy/a-review-of-deep-
contextualized-word-representations-peters-2018

 ELMo, BERT, OpenAI GPT explanation blog : http://jalammar.github.io/illustrated-bert/

 Universal Language Model Fine-tuning for Text Classfication (Jeremy Howard and
Sebastian Ruder, 2018)

 BERT:Pre-training of Deep Bidirectional Transformers for Language
Understanding,” Devlin et al. 2019, NAACL

 Improving Language Understanding with Unsupervised Learning (Radford et al. 2018)

 Attention Is All You Need, Vaswani et al. 2017

 Stanford CS224N: NLP with Deep Learning | Winter 2019 | Lecture 14 – Transformers and
Self-Attention

 https://www.youtube.com/watch?v=5vcj8kSwBCY&t=811s

 OpenAI-GPT figure : https://www.topbots.com/generalized-language-models-ulmfit-
openai-gpt/

 Input representation of BERT : https://medium.com/@_init_/why-bert-has-3-embedding-
layers-and-their-implementation-details-9c261108e28a

16

Thank you for your attention!

고영중 (Ko, Youngjoong)

nlplab.skku.edu

61

